Part Number Hot Search : 
100N6 MA104 N4H11 9C5131 E1A102MR AD9775 MBR101 BA6406
Product Description
Full Text Search
 

To Download MC33178 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Order this document by MC33178/D
MC33178 High Output Current Low Power, Low Noise Bipolar Operational Amplifiers
The MC33178/9 series is a family of high quality monolithic amplifiers employing Bipolar technology with innovative high performance concepts for quality audio and data signal processing applications. This device family incorporates the use of high frequency PNP input transistors to produce amplifiers exhibiting low input offset voltage, noise and distortion. In addition, the amplifier provides high output current drive capability while consuming only 420 A of drain current per amplifier. The NPN output stage used, exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open-loop high frequency output impedance, symmetrical source and sink AC frequency performance. The MC33178/9 family offers both dual and quad amplifier versions, tested over the vehicular temperature range, and are available in DIP and SOIC packages. * 600 Output Drive Capability
MC33179
HIGH OUTPUT CURRENT LOW POWER, LOW NOISE OPERATIONAL AMPLIFIERS
DUAL
P SUFFIX PLASTIC PACKAGE CASE 626
8 1
* * * * * * * *
Large Output Voltage Swing Low Offset Voltage: 0.15 mV (Mean) Low T.C. of Input Offset Voltage: 2.0 V/C Low Total Harmonic Distortion: 0.0024% (@ 1.0 kHz w/600 Load) High Gain Bandwidth: 5.0 MHz High Slew Rate: 2.0 V/s Dual Supply Operation: 2.0 V to 18 V ESD Clamps on the Inputs Increase Ruggedness without Affecting Device Performance
8 1
D SUFFIX PLASTIC PACKAGE CASE 751 (SO-8)
PIN CONNECTIONS
Output 1 Inputs 1 VEE
1 2 3 4 8
- +
7
VCC Output 2 Inputs 2
- +5
6
(Top View)
Representative Schematic Diagram (Each Amplifier)
VCC
QUAD
Iref Iref
14 1
P SUFFIX PLASTIC PACKAGE CASE 646 D SUFFIX PLASTIC PACKAGE CASE 751A (SO-14)
Vin -
Vin +
CC VO CM
14 1
PIN CONNECTIONS
VEE Output 1
1 2 - + - + 14 13
Output 4 Inputs 4
ORDERING INFORMATION
Op Amp Function Dual Quad Fully Compensated MC33178D MC33178P MC33179D MC33179P TA = -40 to +85C Operating Temperature Range Package SO-8 Plastic DIP SO-14 Plastic DIP
Inputs 1
3
1
4
12 11
VCC Inputs 2
4 5 6 + - + -
VEE Inputs 3
10 9 8
2
3
Output 2
7
Output 3
(Top View)
(c) Motorola, Inc. 1996 Rev 0
MOTOROLA ANALOG IC DEVICE DATA
1
MC33178 MC33179
MAXIMUM RATINGS
Rating Supply Voltage (VCC to VEE) Input Differential Voltage Range Input Voltage Range Output Short Circuit Duration (Note 2) Maximum Junction Temperature Storage Temperature Range Maximum Power Dissipation Symbol VS VIDR VIR tSC TJ Tstg PD Value +36 (Note 1) (Note 1) Indefinite +150 -60 to +150 (Note 2) Unit V V V sec C C mW
NOTES: 1. Either or both input voltages should not exceed VCC or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. (See power dissipation performance characteristic, Figure 1.)
DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = -15 V, TA = 25C, unless otherwise noted.)
Characteristics Input Offset Voltage (RS = 50 , VCM = 0 V, VO = 0 V) (VCC = +2.5 V, VEE = -2.5 V to VCC = +15 V, VEE = -15 V) TA = +25C TA = -40 to +85C Average Temperature Coefficient of Input Offset Voltage (RS = 50 , VCM = 0 V, VO = 0 V) TA = -40 to +85C Input Bias Current (VCM = 0 V, VO = 0 V) TA = +25C TA = -40 to +85C Input Offset Current (VCM = 0 V, VO = 0 V) TA = +25C TA = -40 to +85C Common Mode Input Voltage Range (VIO = 5.0 mV, VO = 0 V) Large Signal Voltage Gain (VO = -10 V to +10 V, RL = 600 ) TA = +25C TA = -40 to +85C Output Voltage Swing (VID = 1.0 V) (VCC = +15 V, VEE = -15 V) RL = 300 RL = 300 RL = 600 RL = 600 RL = 2.0 k RL = 2.0 k (VCC = +2.5 V, VEE = -2.5 V) RL = 600 RL = 600 Common Mode Rejection (Vin = 13 V) Power Supply Rejection VCC/VEE = +15 V/ -15 V, +5.0 V/ -15 V, +15 V/ -5.0 V Output Short Circuit Current (VID = 1.0 V, Output to Ground) Source (VCC = 2.5 V to 15 V) Sink (VEE = -2.5 V to -15 V) Power Supply Current (VO = 0 V) (VCC = 2.5 V, VEE = -2.5 V to VCC = +15 V, VEE = -15 V) MC33178 (Dual) TA = +25C TA = -40 to +85C MC33179 (Quad) TA = +25C TA = -40 to +85C 5 6, 7 Figure 2 Symbol |VIO| -- -- 2 VIO/T -- 3, 4 IIB -- -- |IIO| -- -- VICR AVOL 50 k 25 k 8, 9, 10 VO+ VO- VO+ VO- VO+ VO- VO+ VO- 11 12 13, 14 CMR PSR ISC +50 -50 15 ID +80 -100 -- -- mA -- -- +12 -- +13 -- 1.1 -- 80 80 +12 -12 +13.6 -13 +14 -13.8 1.6 -1.6 110 110 -- -- -- -12 -- -13 -- -1.1 -- -- dB dB mA 200 k -- -- -- V -13 -- 5.0 -- -14 +14 50 60 -- +13 V V/V 100 -- 500 600 nA 2.0 -- nA 0.15 -- 3.0 4.0 V/C Min Typ Max Unit mV
-- -- -- --
-- -- 1.7 --
1.4 1.6 2.4 2.6
2
MOTOROLA ANALOG IC DEVICE DATA
MC33178 MC33179
AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = -15 V, TA = 25C, unless otherwise noted.)
Characteristics Slew Rate (Vin = -10 V to +10 V, RL = 2.0 k, CL = 100 pF, AV = +1.0 V) Gain Bandwidth Product (f = 100 kHz) AC Voltage Gain (RL = 600 , VO = 0 V, f = 20 kHz) Unity Gain Frequency (Open-Loop) (RL = 600 , CL = 0 pF) Gain Margin (RL = 600 , CL = 0 pF) Phase Margin (RL = 600 , CL = 0 pF) Channel Separation (f = 100 Hz to 20 kHz) Power Bandwidth (VO = 20 Vpp, RL = 600 , THD 1.0%) Distortion (RL = 600 ,, VO = 2.0 Vpp, AV = +1.0 V) (f = 1.0 kHz) (f = 10 kHz) (f = 20 kHz) Open Loop Output Impedance (VO = 0 V, f = 3.0 MHz, AV = 10 V) Differential Input Resistance (VCM = 0 V) Differential Input Capacitance (VCM = 0 V) Equivalent Input Noise Voltage (RS = 100 ,) f = 10 Hz f = 1.0 kHz Equivalent Input Noise Current f = 10 Hz f = 1.0 kHz 27 25 20, 22, 23 21, 22, 23 24 Figure 16, 31 17 18, 19 Symbol SR GBW AVO fU Am m CS BWp THD -- -- -- 26 |ZO| Rin Cin en -- -- 28 in -- -- 0.33 0.15 -- -- 8.0 7.5 -- -- pA/ Hz -- -- -- 0.0024 0.014 0.024 150 200 10 -- -- -- -- -- -- k pF nV/ Hz Min 1.2 2.5 -- -- -- -- -- -- Typ 2.0 5.0 50 3.0 15 60 -120 32 Max -- -- -- -- -- -- -- -- Unit V/s MHz dB MHz dB Degree s dB kHz %
PD (MAX), MAXIMUM POWER DISSIPATION (mW)
Figure 1. Maximum Power Dissipation versus Temperature
2400 V IO , INPUT OFFSET VOLTAGE (mV) 2000 1600 MC33179D 1200 800 MC33178D 400 0 -60 -40 -20 MC33178P/9P 4.0 3.0 2.0 1.0 0 -1.0 -2.0 -3.0 -4.0 -55
Figure 2. Input Offset Voltage versus Temperature for 3 Typical Units
VCC = +15 V VEE = -15 V RS = 10 VCM = 0 V
Unit 1 Unit 2 Unit 3
0
20
40
60
80 100 120 140 160 180
-25
0
25
50
75
100
125
TA, AMBIENT TEMPERATURE (C)
TA, AMBIENT TEMPERATURE (C)
MOTOROLA ANALOG IC DEVICE DATA
3
MC33178 MC33179
Figure 3. Input Bias Current versus Common Mode Voltage
160 I IB , INPUT BIAS CURRENT (nA) I IB , INPUT BIAS CURRENT (nA) 140 120 100 80 60 40 20 0 -15 -10 -5.0 0 5.0 VCM, COMMON MODE VOLTAGE (V) 10 15 VCC = +15 V VEE = -15 V TA = 25C 120 110 100 90 80 70 60 -55 VCC = +15 V VEE = -15 V VCM = 0 V
Figure 4. Input Bias Current versus Temperature
-25
0 25 50 75 TA, AMBIENT TEMPERATURE (C)
100
125
V ICR, INPUT COMMON MODE VOLTAGE RANGE (V)
Figure 5. Input Common Mode Voltage Range versus Temperature
AVOL, OPEN LOOP VOLTAGE GAIN (kV/V) VCC VCC -0.5 V VCC -1.0 V VCC -1.5 V VCC -2.0 V VCC = +5.0 V to +18 V VEE = -5.0 V to -18 V VIO = 5.0 mV 250 200 150 100 50 0 -55
Figure 6. Open Loop Voltage Gain versus Temperature
VEE +1.0 V VEE +0.5 V VEE -55 -25 0 25 50 75 100 125
VCC = +15 V VEE = -15 V f = 10 Hz VO = 10 V to +10 V RL = 600 -25 0 25 50 75 100 125
TA, AMBIENT TEMPERATURE (C)
TA, AMBIENT TEMPERATURE (C)
Figure 7. Voltage Gain and Phase versus Frequency
A VOL, OPEN LOOP VOLTAGE GAIN (dB) 50 40 30 20 10 0 -10 -20 1A 1B VCC = +15 V VEE = -15 V VO = 0 V TA = 25C 80 , EXCESS PHASE (DEGREES) 100 120 140 160 180 200 220 240 260 20 280 VO, OUTPUT VOLTAGE (Vpp ) 40 35 30 25 20 15 10 5.0 0 0
Figure 8. Output Voltage Swing versus Supply Voltage
TA = 25C RL = 10 k RL = 600
1A) Phase (RL = 600 ) 2B -30 2A) Phase (RL = 600 , CL = 300 pF) 2A -40 1B) Gain (RL = 600 ) 2B) Gain (RL = 600 , CL = 300 pF) -50 2 34 5 6 7 8 9 10 f, FREQUENCY (Hz)
5.0 10 15 VCC, |VEE|, SUPPLY VOLTAGE (V)
20
4
MOTOROLA ANALOG IC DEVICE DATA
MC33178 MC33179
Figure 9. Output Saturation Voltage versus Load Current
V sat , OUTPUT SATURATION VOLTAGE (V) VCC TA = +125C TA = -55C Source VO, OUTPUT VOLTAGE (Vpp ) 28 24 20 16 12 8.0 4.0 0 1.0 k VCC = +15 V VEE = -15 V RL = 600 AV = +1.0 V THD = 1.0% TA = 25C 10 k 100 k 1.0 M
Figure 10. Output Voltage versus Frequency
VCC -1.0 V
VCC -2.0 V Sink TA = -55C TA = +125C VEE 0 5.0 10 IL, LOAD CURRENT (mA) VCC = +5.0 V to +18 V VEE = -5.0 V to -18 V 15 20
VEE +2.0 V VEE +1.0 V
f, FREQUENCY (Hz)
Figure 11. Common Mode Rejection versus Frequency Over Temperature
120 CMR, COMMON MODE REJECTION (dB) PSR, POWER SUPPLY REJECTION (dB) 100 80 60 40 20
CMR = 20 Log VCM - ADM + VCM VO VO
Figure 12. Power Supply Rejection versus Frequency Over Temperature
120 TA = -55 to +125C VCC = +15 V VEE = -15 V VCC = 1.5 V
VCC = +15 V VEE = -15 V VCM = 0 V VCM = 1.5 V TA = -55 to +125C
100 80 60 40 20
PSR = 20 Log - ADM + VCC VO VEE VO/ADM VCC
+PSR -PSR
x ADM
0 10
100
1.0 k 10 k f, FREQUENCY (Hz)
100 k
1.0 M
0 10
100
1.0 k 10 k f, FREQUENCY (Hz)
100 k
1.0 M
I SC , OUTPUT SHORT CIRCUIT CURRENT (mA)
I SC , OUTPUT SHORT CIRCUIT CURRENT (mA)
Figure 13. Output Short Circuit Current versus Output Voltage
100 Source 80 Sink 60 40 20 0 -15
Figure 14. Output Short Circuit Current versus Temperature
100 90 Sink 80 Source 70 60 50 -55 VCC = +15 V VEE = -15 V VID = 1.0 V RL < 10
VCC = +15 V VEE = -15 V VID = 1.0 V
-9.0
-3.0 0 3.0 VO, OUTPUT VOLTAGE (V)
9.0
15
-25
0
25
50
75
100
125
TA, AMBIENT TEMPERATURE (C)
MOTOROLA ANALOG IC DEVICE DATA
5
MC33178 MC33179
Figure 15. Supply Current versus Supply Voltage with No Load
I CC, SUPPLY CURRENT/AMPLIFIER ( A) 625 SR, SLEW RATE (NORMALIZED) 500 375 250 125 0 TA = +125C TA = +25C TA = -55C 1.15 1.10 1.05 1.00 0.95 0.90
-
Figure 16. Normalized Slew Rate versus Temperature
VCC = +15 V VEE = -15 V Vin = 20 Vpp
0.85 0.80 0.75 -55 -25 0 25
Vin
+
VO 600 100 pF
0
2.0
4.0
6.0
8.0
10
12
14
16
18
50
75
100
125
VCC, |VEE| , SUPPLY VOLTAGE (V)
TA, AMBIENT TEMPERATURE (C)
Figure 17. Gain Bandwidth Product versus Temperature
GBW, GAIN BANDWIDTH PRODUCT (MHz) 10 8.0 6.0 4.0 2.0 0 -55 VCC = +15 V VEE = -15 V f = 100 kHz RL = 600 CL = 0 pF 50 40 A V , VOLTAGE GAIN (dB) 30 20 10 0 -10 -20 -30 -40 100 125 -50 100 k
Figure 18. Voltage Gain and Phase versus Frequency
80 120 140 Gain VCC = +15 V VEE = -15 V RL = 600 TA = 25C CL = 0 pF 160 180 200 220 240 260 280 100 M , EXCESS PHASE (DEGREES) Phase 100
-25
0 25 50 75 TA, AMBIENT TEMPERATURE (C)
1.0 M 10 M f, FREQUENCY (Hz)
Figure 19. Voltage Gain and Phase versus Frequency
50 40 A V , VOLTAGE GAIN (dB) 30 20 10 0 -10 1B 2B 2A 1A TA = 25C RL = CL = 0 pF 80 100 140 160 180 200 220 240 260 10 M 280 100 M , PHASE (DEGREES) 120 Am, OPEN LOOP GAIN MARGIN (dB) 15
Figure 20. Open Loop Gain Margin versus Temperature
CL = 10 pF 12 CL = 100 pF 9.0 CL = 300 pF 6.0 3.0 0 -55 VCC = +15 V VEE = -15 V RL = 600
-20 1A) Phase V =18 V, V = -18 V CC EE -30 2A) Phase VCC 1.5 V, VEE = -1.5 V 1B) Gain V = 18 V, VEE = -18 V -40 2B) Gain VCC = 1.5 V, V = -1.5 V CC EE -50 100 k 1.0 M
-25
0
25
50
75
100
125
f, FREQUENCY (Hz)
TA, AMBIENT TEMPERATURE (C)
6
MOTOROLA ANALOG IC DEVICE DATA
MC33178 MC33179
Figure 21. Phase Margin versus Temperature
60 m , PHASE MARGIN (DEGREES) 50 40 30 20 10 0 -55 VCC = +15 V VEE = -15 V RL = 600 -25 0 25 50 75 100 125 CL = 10 pF A m , GAIN MARGIN (dB) CL = 100 pF 12 10 8.0 6.0 4.0
R1
Figure 22. Phase Margin and Gain Margin versus Differential Source Resistance
60 50 VCC = +15 V VEE = -15 V RT = R1+R2 VO = 0 V TA = 25C Gain Margin 40 30 20 - + 1.0 k Phase Margin
VO
CL = 300 pF
2.0
Vin R2
10 0 100 k
0 100
10 k
TA, AMBIENT TEMPERATURE (C)
RT, DIFFERENTIAL SOURCE RESISTANCE ()
Figure 23. Open Loop Gain Margin and Phase Margin versus Output Load Capacitance
18 A m , OPEN LOOP GAIN MARGIN (dB) Phase Margin 15 12 Gain Margin 30
- Vin + VO 600 CL
Figure 24. Channel Separation versus Frequency
60 m, PHASE MARGIN (DEGREES) 50 40 CS, CHANNEL SEPARATION (dB) 150 140 130 120 110 100 100 Drive Channel VCC = +15 V CEE = -15 V RL = 600 TA = 25C
VCC = +15 V VEE = -15 V VO = 0 V
9.0 6.0 3.0 0 10 100 CL, OUTPUT LOAD CAPACITANCE (pF)
20 10 0 1.0 k
1.0 k
10 k f, FREQUENCY (Hz)
100 k
1.0 M
Figure 25. Total Harmonic Distortion versus Frequency
THD, TOTAL HARMONIC DISTORTION (%) 10 |Z O |, OUTPUT IMPEDANCE ( ) VCC = +15 V VO = 2.0 Vpp VEE = -15 V TA = 25C RL = 600 1.0 AV = 100 0.1 AV = 10 AV = 1.0 10 k 100 k 500 AV = 1000 400 300 200 100 0 1.0 k 3 4 100 1.0 k f, FREQUENCY (Hz)
Figure 26. Output Impedance versus Frequency
1. AV = 1.0 2. AV = 10 3. AV = 100 4. AV = 1000
VCC = +15 V VEE = -15 V VO = 0 V TA = 25C
2
1
0.01 10
10 k
100 k f, FREQUENCY (Hz)
1.0 M
10 M
MOTOROLA ANALOG IC DEVICE DATA
7
m , PHASE MARGIN (DEGREES)
MC33178 MC33179
e n , INPUT REFERRED NOISE VOLTAGE ( nV/ Hz )
20 18 16 14 12 10 8.0 6.0 4.0 2.0 0 10 VCC = +15 V VEE = -15 V TA = 25C 100
i n , INPUT REFERRED NOISE CURRENT (pA/ Hz )
Figure 27. Input Referred Noise Voltage versus Frequency
Input Noise Voltage Test Circuit + - VO
Figure 28. Input Referred Noise Current versus Frequency
0.5
Input Noise Current Test Circuit
0.4 0.3 0.2 0.1 0 10 VCC = +15 V VEE = -15 V TA = 25C 100
RS
+ - VO
(RS = 10 k)
1.0 k f, FREQUENCY (Hz)
10 k
10 k
1.0 k f, FREQUENCY (Hz)
10 k
100 k
Figure 29. Percent Overshoot versus Load Capacitance
100 80 70 60 50 40 30 20 10 0 10 100 1.0 k 10 k RL = 600 RL = 2.0 k V O, OUTPUT VOLTAGE (5.0 V/DIV) 90 PERCENT OVERSHOOT (%) VCC = +15 V VEE = -15 V TA = 25C
Figure 30. Noninverting Amplifier Slew Rate
VCC = +15 V VEE = -15 V AV = +1.0 RL = 600 CL = 100 pF TA = 25C
t, TIME (2.0 s/DIV)
CL, LOAD CAPACITANCE (pF)
Figure 31. Small Signal Transient Response
V O, OUTPUT VOLTAGE (50 mV/DIV) VCC = +15 V VEE = -15 V AV = +1.0 RL = 600 CL = 100 pF TA = 25C
Figure 32. Large Signal Transient Response
VCC = +15 V VEE = -15 V AV = +1.0 RL = 600 CL = 100 pF TA = 25C
V O, OUTPUT VOLTAGE (5.0 V/DIV)
t, TIME (2.0 ns/DIV)
t, TIME (5.0 s/DIV)
8
MOTOROLA ANALOG IC DEVICE DATA
MC33178 MC33179
Figure 33. Telephone Line Interface Circuit
10 k To Receiver A1 - + 10 k 1.0 F 200 k 120 k From Microphone 2.0 k A2 300 820 0.05 F
10 k
- + VR
Tip
1N4678 10 k
Phone Line
Ring 10 k - + A3
VR
APPLICATION INFORMATION
This unique device uses a boosted output stage to combine a high output current with a drain current lower than similar bipolar input op amps. Its 60 phase margin and 15 dB gain margin ensure stability with up to 1000 pF of load capacitance (see Figure 23). The ability to drive a minimum 600 load makes it particularly suitable for telecom applications. Note that in the sample circuit in Figure 33 both A2 and A3 are driving equivalent loads of approximately 600 . The low input offset voltage and moderately high slew rate and gain bandwidth product make it attractive for a variety of other applications. For example, although it is not single supply (the common mode input range does not include ground), it is specified at +5.0 V with a typical common mode rejection of 110 dB. This makes it an excellent choice for use with digital circuits. The high common mode rejection, which is stable over temperature, coupled with a low noise figure and low distortion, is an ideal op amp for audio circuits. The output stage of the op amp is current limited and therefore has a certain amount of protection in the event of a short circuit. However, because of its high current output, it is especially important not to allow the device to exceed the maximum junction temperature, particularly with the MC33179 (quad op amp). Shorting more than one amplifier could easily exceed the junction temperature to the extent of causing permanent damage. Stability As usual with most high frequency amplifiers, proper lead dress, component placement, and PC board layout should be exercised for optimum frequency performance. For example, long unshielded input or output leads may result in unwanted input/output coupling. In order to preserve the relatively low input capacitance associated with these amplifiers, resistors connected to the inputs should be immediately adjacent to the input pin to minimize additional stray input capacitance. This not only minimizes the input pole frequency for optimum frequency response, but also minimizes extraneous "pick up" at this node. Supplying decoupling with adequate capacitance immediately adjacent to the supply pin is also important, particularly over temperature, since many types of decoupling capacitors exhibit great impedance changes over temperature. Additional stability problems can be caused by high load capacitances and/or a high source resistance. Simple compensation schemes can be used to alleviate these effects.
MOTOROLA ANALOG IC DEVICE DATA
9
MC33178 MC33179
If a high source of resistance is used (R1 > 1.0 k), a compensation capacitor equal to or greater than the input capacitance of the op amp (10 pF) placed across the feedback resistor (see Figure 34) can be used to neutralize that pole and prevent outer loop oscillation. Since the closed loop transient response will be a function of that capacitance, it is important to choose the optimum value for that capacitor. This can be determined by the following Equation: For moderately high capacitive loads (500 pF < CL < 1500 pF) the addition of a compensation resistor on the order of 20 between the output and the feedback loop will help to decrease miller loop oscillation (see Figure 35). For high capacitive loads (C L > 1500 pF), a combined compensation scheme should be used (see Figure 36). Both the compensation resistor and the compensation capacitor affect the transient response and can be calculated for optimum performance. The value of CC can be calculated using Equation (1). The Equation to calculate RC is as follows: RC = ZO
CC = (1 +[R1/R2])2
CL (ZO/R2)
(1)
where: ZO is the output impedance of the op amp.
R1/R2
(2)
Figure 34. Compensation for High Source Impedance
R2
Figure 35. Compensation Circuit for Moderate Capacitive Loads
R2
CC
- - R1 + R1 ZL +
RC
CL
Figure 36. Compensation Circuit for High Capacitive Loads
R2
CC
- +
RC
R1
CL
10
MOTOROLA ANALOG IC DEVICE DATA
MC33178 MC33179
OUTLINE DIMENSIONS
P SUFFIX PLASTIC PACKAGE CASE 626-05 ISSUE K
NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. DIM A B C D F G H J K L M N MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC --- 10_ 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC --- 10_ 0.030 0.040
8
5
-B-
1 4
F
NOTE 2
-A- L
C -T-
SEATING PLANE
J N D K
M
M
H
G 0.13 (0.005) TA
M
B
M
D SUFFIX PLASTIC PACKAGE CASE 751-05 (SO-8) ISSUE R
A
8
D
5
C
E
1 4
H
0.25
M
B
M
h B C e A
SEATING PLANE
X 45 _
NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS ARE IN MILLIMETERS. 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE MOLD PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. DIM A A1 B C D E e H h L MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.35 0.49 0.18 0.25 4.80 5.00 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_
q
L 0.10 A1 0.25 B
M
CB
S
A
S
q
MOTOROLA ANALOG IC DEVICE DATA
11
MC33178 MC33179
OUTLINE DIMENSIONS
P SUFFIX PLASTIC PACKAGE CASE 646-06 ISSUE L
NOTES: 1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 4. ROUNDED CORNERS OPTIONAL. DIM A B C D F G H J K L M N INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.300 BSC 0_ 10_ 0.015 0.039 MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.62 BSC 0_ 10_ 0.39 1.01
14
8
B
1 7
A F C N H G D
SEATING PLANE
L
J K M D SUFFIX PLASTIC PACKAGE CASE 751A-03 (SO-14) ISSUE F
-A-
14 8
-B-
1 7
P 7 PL 0.25 (0.010)
M
B
M
NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
G C
R X 45 _
F
-T-
SEATING PLANE
D 14 PL 0.25 (0.010)
K
M
M
S
J
TB
A
S
DIM A B C D F G J K M P R
MILLIMETERS MIN MAX 8.55 8.75 3.80 4.00 1.35 1.75 0.35 0.49 0.40 1.25 1.27 BSC 0.19 0.25 0.10 0.25 0_ 7_ 5.80 6.20 0.25 0.50
INCHES MIN MAX 0.337 0.344 0.150 0.157 0.054 0.068 0.014 0.019 0.016 0.049 0.050 BSC 0.008 0.009 0.004 0.009 0_ 7_ 0.228 0.244 0.010 0.019
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447 or 602-303-5454 MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com
JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-81-3521-8315 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298
12
*MC33178/D*
MOTOROLA ANALOG IC DEVICE DATA MC33178/D


▲Up To Search▲   

 
Price & Availability of MC33178

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X